Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions.
نویسندگان
چکیده
Interactions of proteins with low-molecular-weight ligands, such as metabolites, cofactors, and allosteric regulators, are important determinants of metabolism, gene regulation, and cellular homeostasis. Pharmaceuticals often target these interactions to interfere with regulatory pathways. We have developed a rapid, precise, and high-throughput method for quantitatively measuring protein-ligand interactions without the need to purify the protein when performed in cells with low background activity. This method, differential radial capillary action of ligand assay (DRaCALA), is based on the ability of dry nitrocellulose to separate the free ligand from bound protein-ligand complexes. Nitrocellulose sequesters proteins and bound ligand at the site of application, whereas free ligand is mobilized by bulk movement of the solvent through capillary action. We show here that DRaCALA allows detection of specific interactions between three nucleotides and their cognate binding proteins. DRaCALA allows quantitative measurement of the dissociation constant and the dissociation rate. Furthermore, DRaCALA can detect the expression of a cyclic-di-GMP (cdiGMP)-binding protein in whole-cell lysates of Escherichia coli, demonstrating the power of the method to bypass the prerequisite for protein purification. We have used DRaCALA to investigate cdiGMP signaling in 54 bacterial species from 37 genera and 7 eukaryotic species. These studies revealed the presence of potential cdiGMP-binding proteins in 21 species of bacteria, including 4 unsequenced species. The ease of obtaining metabolite-protein interaction data using the DRaCALA assay will facilitate rapid identification of protein-metabolite and protein-pharmaceutical interactions in a systematic and comprehensive approach.
منابع مشابه
A rapid assay for affinity and kinetics of molecular interactions with nucleic acids
The Differential Radial Capillary Action of Ligand Assay (DRaCALA) allows detection of protein interactions with low-molecular weight ligands based on separation of the protein-ligand complex by differential capillary action. Here, we present an application of DRaCALA to the study of nucleic acid-protein interactions using the Escherichia coli cyclic AMP receptor protein (CRP). CRP bound in DRa...
متن کاملA high throughput molecular force assay for protein-DNA interactions.
An accurate and genome-wide characterization of protein-DNA interactions such as transcription factor binding is of utmost importance for modern biology. Powerful screening methods emerged. But the vast majority of these techniques depend on special labels or markers against the ligand of interest and moreover most of them are not suitable for detecting low-affinity binders. In this article a m...
متن کاملHomogeneous Immunoassay for Detection of Tnt and Its Analogues on a Microfabricated Capillary Array Electrophoisis Chip
A high sensitivity homogeneous immunoassay for TNT and its analogues has been developed based on the rapid electrophoretic separation of an equilibrated mixture of an anti-TNT antibody, fluorescein-labeled TNT, and unlabeled TNT or its analogue. The band intensities of the free fluorescein-labeled TNT and of the antibody-antigen complex reveal the relative equilibrated concentrations. TNT and i...
متن کاملPreparation of a Major Metabolite of Iguratimod and Simultaneous Assay of Iguratimod and Its Metabolite by HPLC in Rat Plasma
Iguratimod is a new synthetic disease-modifying antirheumatic drug intended to treat patients with rheumatoid arthritis. A new method using recombinant human CYP450s yeast cells containing c-DNA expressed P450s was applied to identify the metabolic pathways of iguratimod and to prepare its metabolite. The metabolite was isolated, and its structure was identified by quadrupole time-of-flight-mas...
متن کاملPreparation of a Major Metabolite of Iguratimod and Simultaneous Assay of Iguratimod and Its Metabolite by HPLC in Rat Plasma
Iguratimod is a new synthetic disease-modifying antirheumatic drug intended to treat patients with rheumatoid arthritis. A new method using recombinant human CYP450s yeast cells containing c-DNA expressed P450s was applied to identify the metabolic pathways of iguratimod and to prepare its metabolite. The metabolite was isolated, and its structure was identified by quadrupole time-of-flight-mas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 37 شماره
صفحات -
تاریخ انتشار 2011